
Geometrical analysis of free rotation of a rigid body

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1998 J. Phys. A: Math. Gen. 31 6073

(http://iopscience.iop.org/0305-4470/31/28/020)

Download details:

IP Address: 171.66.16.122

The article was downloaded on 02/06/2010 at 06:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/31/28
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.31 (1998) 6073–6080. Printed in the UK PII: S0305-4470(98)87860-8

Geometrical analysis of free rotation of a rigid body

Katsuhiro Suzuki†§, Yodai Watanabe‡ and Tsutomu Kambe‡
† Department of Applied Physics, Tokyo University of Agriculture and Technology, 3-5-8
Saiwai-cho, Fuchu-shi, Tokyo 183-0054, Japan
‡ Department of Physics, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku,
Tokyo 113-0033, Japan

Received 26 September 1997, in final form 30 March 1998

Abstract. Rotational motion of a free rigid body without action of external torque is governed
by the Euler equation, which is reformulated as a geodesic equation by introducing a Riemannian
metric and connection on the Lie groupSO(3). The aim of this work is to investigate the stability
of the motion from the viewpoint of geodesic variation and also to study the relationship between
the instability and the Riemannian sectional curvatures of variable signs.

The stability theorem of steady rotations known in the mechanics (dynamical property)
is recovered by solving the Jacobi equation for the variational fieldY (a geometrical field).
Existence of a conjugate point for the rigid body of any shape is confirmed, and the condition
for any Jacobi field concerning the steady rotations such thatY |t=0 = 0 to have a conjugate
time is derived. The sectional curvaturesK ’s are calculated. For the stable steady rotation,
the curvaturesK ’s take either positive definite values, or both positive and negative values in
oscillatory manner, depending on the inertia tensor. However, the time averagesK̄ ’s are always
positive for anyY in the linearly stable case, while there existY ’s which makeK̄ negative in
the case of linear instability.

1. Introduction

Hamiltonian formulation based on the Lie group theory is extensively developed and has
recently been applied to various physical systems [1, 2]. They are called theLie–Poisson
systems and can be reformulated as geodesic equations on the corresponding Lie group
manifolds if the Hamiltonian function is quadratic [3]. This reformulation has a merit that
the mathematical theory of geodesic instability can be applied. It provides a novel analysis
of dynamical systems in terms of the Riemannian geometry and the theory of Lie group.

Rotational motion of a free rigid body (without action of external force) is governed by
the Euler equation,

I1�̇1 = (I2− I3)�2�3

I2�̇2 = (I3− I1)�3�1

I3�̇3 = (I1− I2)�1�2

(1)

whereΩ = (�1, �2, �3) is the angular velocity in thebody coordinate system andIi ’s
(i = 1, 2, 3) are the principal values of the inertia tensor. Equation (1) is a geodesic
equation in the sense that it is the Euler–Lagrange equation for the variational principle
δ
∫
T dt = 0, which is equivalent toδ

∫ √
T dt = 0 apart from reparametrization, whereT
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is kinetic energy of the rigid body. Since the solutionΩ(t) is explicitly represented in terms
of the Jacobian elliptic functions [4, 7], equation (1) is completely integrable. The Euler
equation is a typical Lie–Poisson system and provides the basis of general formulation.
However, despite its importance, an instability analysis based on the Riemannian geometry
has not been made to date (to the authors’ knowledge). In this paper, we investigate the
Riemannian structure on the rotation groupSO(3) and instability of the rigid-body motion
by formulating equation (1) as a geodesic equation.

2. Riemannian geometry onSO(3)

Before introducing the Riemannian geometry on the group manifold, let us summarize the
Lie–Poisson formulation of equation (1). We denote byP ∈ R3 the material points of
the rigid body with the coordinates(P1, P2, P3) relative to the frame fixed to the body
(body system). Corresponding spatial points relative to the coordinate system fixed in the
space (spatial system) are denoted byp = (p1, p2, p3) ∈ R3. Both systems are assumed
to have a common fixed origin. By the definition of the rigid body, there exists an orbit
M(t)(t ∈ R1) on SO(3) such thatp = M(t)P . It is known in the classical analysis that
the motion of the angular velocity vector is time-periodic in the body system, while the
body’s motion is quasiperiodic relative to the fixed space [2, 4]. By defining the angular
velocity Ω ∈ R3 and the angular momentumΠ ∈ R3 relative to the body system, it can
be shown in the representation onR3 that Ω is an element of the Lie algebraso(3) of
SO(3), while Π belongs to its dual spaceso(3)∗ [2]. The duality betweenΩ and Π is
confirmed by one-to-one linear correspondenceΠ = I(Ω) whereI := diag(I1, I2, I3) is the
inertia tensor [2, 5]. Following the standard method, if we take the Hamiltonian given by
H(Π) = 1

2{Π · I−1(Π)} = 1
2

∑3
j=1 Ij

−152
j ∈ C∞(so(3)∗), it is readily verified that the

governing equation forΠ is given as the Hamilton’s equationddt F = {F,H } where{∗, ∗}
is theLie–Poisson bracket[2].

Because the above Hamiltonian is quadratic, following the theorem by Arnold [3], an
inner product at the identity elemente ∈ SO(3) is naturally introduced as〈〈Ω,Ω′〉〉e =∑3
j=1 Ij�j�

′
j where Ω,Ω′ ∈ so(3). Consequently, a Riemannian metric on the whole

SO(3) manifold is induced by the left extension of this inner product. We apply the
formula in the Riemannian geometry, 2〈〈∇XY ,Z〉〉 = {〈〈[X,Y ],Z〉〉 − 〈〈[X,Z],Y 〉〉 −
〈〈[Y ,Z],X〉〉}, to the present system, whereX,Y andZ are left invariant vector fields
on SO(3) and [∗, ∗] denotes the Lie bracket [6]. Identifying the Lie algebraso(3) with the
set of left invariant vector fieldsXL(SO(3)), the covariant derivative ate is derived from
the above formula as

(∇ηξ)e = 1
2{[η, ξ] − I−1(I(η)× ξ + I(ξ)× η)} (2)

where [η, ξ] = η × ξ for η, ξ ∈ so(3). Then the Euler’s equation (1) is readily obtained
as a geodesic equation. To show this, let us denote byγu(·) : R1 → SO(3) the geodesic
curve which starts fromg ∈ SO(3) in the direction ofu ∈ TgSO(3), namely satisfying
γu(0) = g and γ̇u(0) := d

dt γ (0) = u. Because of the left invariance, the geodesic equation
∇γ̇u γ̇u = 0 ath := γu(t) ∈ SO(3) is equivalent to the following equation ate [10]:

ThLh−1{∇γ̇u γ̇u|h} =
d

dt
Ω+ (∇ΩΩ)e = d

dt
Ω+ I−1{Ω× I(Ω)} = 0 (3)

whereΩ := ThLh−1γ̇u ∈ so(3). It is confirmed that equation (3) is identical to equation (1).
Thus, one can investigate the instability of the rigid-body motion by the theory of
Riemannian geometry.
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Before the instability analysis, we briefly describe theJacobi field and theconjugate
points, that are significant concepts concerning the geodesic variation. The Jacobi field (or
the variational field)V (t) along the geodesicγu(t) is defined byV (t) := ∂s̃α(t, s̃)|s̃=0,
whereα(t, s̃) is a variation ofγu with a variational parameter̃s ∈ R1 such thatα(t, 0) =
γu(t) and ∇t ∂tα(t, s̃) = 0 for any s̃. This V (t) is governed by the Jacobi equation,
∇γ̇u(t)∇γ̇u(t)V (t)+R(V (t), γ̇u(t))γ̇u(t) = 0, whereR(u,v)w := {∇u∇v−∇v∇u−∇[u,v]}w
is the curvature tensor. Then, it is readily derived that

d2

dt2
〈〈V (t),V (t)〉〉 = 2{〈〈∇γ̇uV (t),∇γ̇uV (t)〉〉 −K(V (t), γ̇u(t))}

whereK(u,v) := 〈〈R(u,v)v,u〉〉is thesectional curvatureof the two-dimensional section
spanned by the vectorsu,v ∈ TgSO(3). The norm〈〈V ,V 〉〉 gives a measure for the
instability of the geodesic. For instance, ifK(V (t), γ̇u(t)) is negative definite alongγu,
the geodesic is said to beunstablebecause one of the two independent solutions is growing
with respect to the time. If there existsV (t) such thatV (0) = V (t0) = 0 for t0 > 0, the
point γu(t0) is said to beconjugateto the pointγu(0) with the conjugate timet0. Both
for the geodesic and its variation, the same element inSO(3) acts on the rigid body at the
conjugate time.

3. Instability analysis by the Jacobi equation

It can be easily shown that the Euler equation (1) forΩ has three steady solutions,
S1 = ($, 0, 0)T , S2 = (0, ω,0)T andS3 = (0, 0, ξ)T where$ , ω and ξ are constants.
Concerning these steady solutions, the following theorem is well known in the mechanics
[2, 4].

If I1 < I2 < I3, S1 andS3 are stable whileS2 is unstable in the sense ofLiapunov.
In the following, we investigate the instability of these solutions by the Riemannian

geometry introduced above.
First, let us study the development of the Jacobi field. Applying the covariant derivative

(2) and equation (3), the general form of the Jacobi equation for theSO(3) manifold is
obtained to be

d2

dt2
Y +X × d

dt
Y − F

(
X,

d

dt
Y

)
+ 1

2
F(X,X)× Y − F(X,X × Y ) = 0 (4)

whereF(X,Y ) := I−1{I(X)× Y + I(Y )×X}, and the two vectorsX = X(t) ∈ so(3)
andY = Y (t) ∈ so(3) correspond to the velocity vector and the Jacobi field along the
geodesic, respectively. We impose the orthogonal condition〈〈X,Y 〉〉e = 0 because the
component ofY parallel toX is only related to the reparametrization of the timet . Then,
for a steady stateX = S2 = (0, ω,0)T and general ordering of the magnitudesI1, I2 and
I3, the Jacobi field has the form ofY (t) = (y1(t), 0, y3(t))

T and equation (4) is explicitly
described as

d2

dt2
y1+ I2− I3

I1
ω2y1+

(
1− I2− I3

I1

)
ω

d

dt
y3 = 0

d2

dt2
y3+ I2− I1

I3
ω2y3−

(
1− I2− I1

I3

)
ω

d

dt
y1 = 0.

(5)

By eliminatingy3 from (5), we obtain the following differential equation fory1:

d4

dt4
y1+

(
1+ (I2− I3)(I2− I1)

I1I3

)
ω2 d2

dt2
y1+ (I2− I3)(I2− I1)

I1I3
ω4y1 = 0.
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Assumingy1 = A exp(λt) whereA andλ are constants, it is readily found thatλ2 has two
roots,

λ2
I = −ω2 and λ2

II = −
(I2− I3)(I2− I1)

I1I3
ω2

from which the above stability theorem is recovered. In fact, ifI2 is the minimum or
maximum of the set{I1, I2, I3}, only periodic solutions can exist because bothλ2

j ’s (j = I, II)
are negative. However, in contrast, ifI1 < I2 < I3 or I1 > I2 > I3, there existsy1 which
grows exponentially with respect to the time becauseλ2

II becomes positive.
It is remarkable thatλ2

I corresponds to the frequencies of the steady-state rotation
observed in thespatial frame. This is the unique point of this analysis which treats the
group manifold. Although the geodesic equation is identical to the governing equation for
the body angular velocity, the manifold itself is thegroup SO(3) which acts on the rigid
body. Therefore, both the frequencies that correspond to therotational action determined
by S2 and theperturbative actionwhich moves the rotation axis are obtained. In contrast
to this, only the latter appears in the conventional stability analysis that simply linearizes
equation (3).

4. Conjugate points

It is also worth mentioning that regardless of the shape of the rigid body, a conjugate point
exists for the geodesic which corresponds to the linearly stable steady rotation. The general
solution of the Jacobi equation (5) is

y1 = A sin(ωt)+ B cos(ωt)+ (1− a)b{C sin
(√
abωt

)+D cos
(√
abωt

)}
y3 = B sin(ωt)− A cos(ωt)− (1− b)

√
ab{D sin

(√
abωt

)− C cos
(√
abωt

)} (6)

whereA, B, C andD are arbitrary constants,a = (I2− I3)/I1, and b = (I2− I1)/I3.
In order to show the existence of a conjugate point, we require(1− b)√abC = A and
(1− a)bD = −B so thaty1(0) = y3(0) = 0. Then, equation (6) is described as(
y1(t)

y3(t)

)
=
(

sin(ωt)+m sin
(√
abωt

)
cos(ωt)− cos

(√
abωt

)
−( cos(ωt)− cos

(√
abωt

))
sin(ωt)+m−1 sin

(√
abωt

) )(A
B

)
(7)

wherem =
√
b
a

1−a
1−b . If the determinant of the 2× 2 matrix in equation (7) vanishes at

t = t0 > 0, a conjugate point can exist becausey1(t0) = y3(t0) = 0 for a certain ratioA/B.
This zero-determinant condition is equivalent to

1+M
2

cos
((√

ab + 1
)
ωt
)+ 1−M

2
cos

((√
ab − 1

)
ωt
)− 1= 0 (8)

whereM = 1
2(m+ 1

m
). Therefore, ifI2 is the largest or smallest ofIi ’s (i = 1, 2, 3), which

is equivalent toM > 1, a conjugate point exists because a solutiont = t0(> 0) of equation
(8) exists.

Furthermore, it is interesting thatany Jacobi field (7) has a conjugate time, for the rigid
bodies of appropriate shapes. In fact, the right-hand side of equation (7) vanishes for any
A andB, if and only if

cos(ωt)− cos
(√
abωt

) = sin(ωt)+m sin
(√
abωt

) = sin(ωt)+m−1 sin
(√
abωt

) = 0.

(9)

Therefore, a conjugate timet = t0 > 0 which satisfies equation (9) exists, if and only if

I1 = I3(which impliesm = 1) or
√
ab ∈ Q. (10)
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One can easily confirm that there exist many trios(I1, I2, I3)’s which satisfy the second
condition in equation (10) together witha priori constraints for the general rigid bodies,

Ii > 0(i = 1, 2, 3) and Ii + Ij > Ik (i, j, k ∈ {1, 2, 3}, i 6= j 6= k 6= i).
(11)

(For example,
√
ab = 1/8 for (I1, I2, I3) = (16, 15, 20).) If condition (10) is satisfied, both

the steadily rotating rigid body (corresponding to the geodesic) and the slightly perturbed
one (corresponding to the variation) simultaneously return to their initial configurations,
namely are acted bye ∈ SO(3) at the same time. This statement is consistent with the
conventional linear analysis made in thespatial coordinate system [4].

5. Sectional curvatures

Secondly, let us study the sectional curvature of theSO(3) manifold. For infinite-
dimensional Lie–Poisson systems, the sectional curvatures are mainly investigated because
of the difficulty of the Jacobi equation [3, 8, 9, 11]. In contrast, for the finite dimension,
the Jacobi equation can be given an explicit solution. In the following, we calculate the
sectional curvature directly to investigate the relationship between the Riemannian structure
and the stability property. In the present formulation, the sectional curvature at the identity
elemente ∈ SO(3) is generally described as

K(X,Y ) = 1

2

(
(I2− I3)

2

2I1
+ I2+ I3− 3

2
I1

)
(x2y3− x3y2)

2+ (cyclic permutations)

whereX,Y ∈ so(3). Then, for the steady stateS2,

K(S2,Y ) = ω2

2

{(
(I2− I3)

2

2I1
+ I2+ I3− 3

2
I1

)
y2

3 +
(
(I1− I2)

2

2I3
+ I1+ I2− 3

2
I3

)
y2

1

}
(12)

whereY = (y1, y2, y3)
T corresponds to the Jacobi field. The sign of equation (12) is

determined by the coefficients ofy2
3 and y2

1. If both of them are definitely positive,K is
positive forany Jacobi field. In contrast, if one of them is negative, the positivity ofK is lost.
To illustrate the sign ofK clearly, let us regard the set(I1, I2, I3) as coordinates ofR3, and
denote the surfaces(I2−I3)

2+2I1I2+2I3I1−3I 2
1 = 0 and(I1−I2)

2+2I3I1+2I2I3−3I 2
3 = 0

by sf 3 andsf 1, respectively. These two surfaces together with the boundaries determined
by equation (11) are illustrated in figure 1. The classical stability theorem states thatS2

is stable if thepoint I = (I1, I2, I3) is in the regionsSαi’s (α = p, ∗; i = 0, 1, 2), while
unstable inUαi’s (α = p, ∗; i = 1, 2). On the other hand, the sign ofK is positive for any
Y in the regions with the subscriptp, while the positivity ofK is not assured in those with
the subscript∗. We are interested in the regionsS∗i’s (i = 1, 2) because the positivity of
K is not assured while the geodesic isstableby the theorem.

To investigate this situation, let us consider planar rigid bodies inS∗2 such that
I2 + I3 = I1(0< I2 < I3) and the Jacobi fieldY with the conditionY |t=0 = 0. Then, the
sectional curvature is explicitly written as

K(S2,Y ) = ω2

(
− I2I3

I2+ I3
y2

3 + I2y
2
1

)
(13)

where y1 = 2
√−aC sin(ωt) + (1 − a){D cos(ωt) − C sin(

√−aωt) − D cos(
√−aωt)},

y3 = (1 − a)D sin(ωt) + 2
√−a{−C cos(ωt) − D sin(

√−aωt) + C cos(
√−aωt)} and

a = (I2−I3)/(I2+I3). Varying the values of the parametersI2, I3, C andD, we investigated
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Figure 1. Intersections of the unit sphere inR3 with surfaces concerning the instability ofS2.
The sectional curvatureK is positive definitein the regions with the subscriptp, while the
positivity of K is lost in those with the subscript∗.

the temporal behaviour of equation (13). Then, it is confirmed that the sectional curvature
K has positive maxima during its time development. For example, ifI2

∼= I3 (the rigid
body takes the form of a nearly circular plate),K(S2,Y ) takes positive maxima with
larger amplitude and negative minima with smaller amplitude (figure 2). In contrast, if
I2 � I3 (the rigid body being like a stick),K(S2,Y ) takes negative and positive values
quasiperiodically. We further confirmed that the maxima ofK(S2,Y ) are positive at any
point in S∗i’s (i = 1, 2).

It is interesting to find that not only the maxima but also the time averageK̄ of
K(S2,Y ) is positive inSαi’s (α = p, ∗; i = 0, 1, 2). This statement is trivial inSpi’s
(i = 0, 1, 2). As for the regionsS∗i’s (i = 1, 2), a straightforward calculation shows
that K(S2,Y ) = Kc + F(t) where F(t) is a function of t with Fourier frequencies
2ω, (1±√ab)ω and 2

√
abω, while Kc is a constant given by

Kc = ω2M{F1C
2+ F2D

2}
whereC andD are the constants which appeared in equation (6),

F1 =
{
(I2− I3)

2

2I1
+ I2+ I3− 3

2
I1

}
I1

I3
(I2− I3)+

{
(I1− I2)

2

2I3
+ I1+ I2− 3

2
I3

}
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Figure 2. The time evolution of the sectional curvature of an almost circular plate. (a) ω = 1,
I2 = 1, I3 = 1.001,C = 1 andD = 0; (b) ω = 1, I2 = 1, I3 = 1.001,C = 0 andD = 1.

×I2I3− 2I3I1+ I1I2

2I3

F2 =
{
(I1− I2)

2

2I3
+ I1+ I2− 3

2
I3

}
(I2− I1)+

{
(I2− I3)

2

2I1
+ I2+ I3− 3

2
I1

}
×I2I3− 2I3I1+ I1I2

2I3

andM = 1
2(I2− I1)(I3+ I1− I2)

2I−2
3 I−2

1 . To show the positiveness of̄K, first, let us
consider such a rigid body that satisfies the condition

√
ab = m/n (m, n ∈ N). Then,

taking the time average for the period 2nπω−1, the mean curvaturēK is obtained to be
K̄ = Kc + ω

2nπ

∫ 2nπ/ω
0 F(t) dt = Kc. The sign ofKc is positive. In fact, if we denote the

region
⋃
i=1,2 S∗i byB, bothMF1 andMF2 attain their maxima and minima at the boundary

∂B because∇I(MF1) and ∇I(MF2) do not vanish inB − ∂B. After straightforward
calculations, one can confirm thatMFi ’s (i = 1, 2) are non-negative at∂B, especially
positive definite atsfi ’s (i = 3, 1). Therefore,K̄(= KC) is positive in this case. Next, let
us examine the rigid body which violates the condition

√
ab = m/n (m, n ∈ N); in this case,√

ab becomes an irrational number. In order to calculateK̄, let us adopt an approximation
such that

√
ab ≈ m/n (m, n ∈ N). (It is known that for any given accuracy, an irrational

number can be approximated by a rational number.) For sufficiently largen, which means
high enough precision,̄K becomes positive because the integralω

2nπ

∫ 2nπ/ω
0 F(t) dt becomes

small enough.
In the linearly unstable regionsUαi’s (α = p, ∗; i = 1, 2), the above statement about

the positiveness of̄K is not valid becausēK can diverge to negative infinity for suchY (t)
that grows exponentially with respect to the time, according to equation (13).

6. Conclusion

Geometrical aspects of the free rotation of a rigid body are studied in view of the integrable
property known in the classical mechanics. According to the geodesic formulation of the
Euler equation, the covariant derivative and the sectional curvatureK are given explicitly.
By deriving the solution of the Jacobi fieldY , the stability theorem is recovered and the
existence of the conjugate points is confirmed. Furthermore, it is found that the sectional
curvatureK is dominated bypositivevalues in the case of linear stability, though there exist
Y ’s which makeK negative in the parts of linearly stable regionsS∗i’s (i = 1, 2). However,
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the time-averaged curvaturēK is surely positive inSαi’s (α = p, ∗; i = 0, 1, 2). In contrast,
in the linearly unstable regionsUαi’s (α = p, ∗; i = 1, 2), there exist alwaysY ’s which
makeK̄ grow indefinitely with negative sign. Thus, it is shown that the positivity ofK̄

for anyY corresponds to the linear stability of the free-rigid-body motion. The dynamical
property (stability) is directly explained by Riemannian geometrical quantities (Y andK)
in this work.

Since the conjugate points have a close relation to the global nature of the manifold,
they will also give clues to investigate the long-time behaviour or the large variations of
the geodesics. Further analysis concerning the nonlinear stability should be developed in
the near future.
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