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Abstract. Rotational motion of a free rigid body without action of external torque is governed
by the Euler equation, which is reformulated as a geodesic equation by introducing a Riemannian
metric and connection on the Lie gro§i® (3). The aim of this work is to investigate the stability
of the motion from the viewpoint of geodesic variation and also to study the relationship between
the instability and the Riemannian sectional curvatures of variable signs.

The stability theorem of steady rotations known in the mechardgsgmical property)
is recovered by solving the Jacobi equation for the variational fi€élda geometricalfield).
Existence of a conjugate point for the rigid body of any shape is confirmed, and the condition
for any Jacobi field concerning the steady rotations such ¥hato = 0 to have a conjugate
time is derived. The sectional curvatur&ss are calculated. For the stable steady rotation,
the curvatureX’s take either positive definite values, or both positive and negative values in
oscillatory manner, depending on the inertia tensor. However, the time avetagase always
positive for anyY in the linearly stable case, while there exists which makeK negative in
the case of linear instability.

1. Introduction

Hamiltonian formulation based on the Lie group theory is extensively developed and has
recently been applied to various physical systems [1, 2]. They are callddehBoisson
systems and can be reformulated as geodesic equations on the corresponding Lie group
manifolds if the Hamiltonian function is quadratic [3]. This reformulation has a merit that
the mathematical theory of geodesic instability can be applied. It provides a novel analysis
of dynamical systems in terms of the Riemannian geometry and the theory of Lie group.

Rotational motion of a free rigid body (without action of external force) is governed by
the Euler equation,

L = (I — 13293
12 = (I3 — 1)) 1)
13923 = (I1 — )

where Q) = (21, Q2, Q3) is the angular velocity in th&ody coordinate system ang}’s
(i = 1, 2, 3) are the principal values of the inertia tensor. Equation (1) is a geodesic
equation in the sense that it is the Euler—Lagrange equation for the variational principle
8 [ T dr = 0, which is equivalent té [ VT dt = 0 apart from reparametrization, whefe
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is kinetic energy of the rigid body. Since the soluti@r) is explicitly represented in terms

of the Jacobian elliptic functions [4, 7], equation (1) is completely integrable. The Euler
equation is a typical Lie—Poisson system and provides the basis of general formulation.
However, despite its importance, an instability analysis based on the Riemannian geometry
has not been made to date (to the authors’ knowledge). In this paper, we investigate the
Riemannian structure on the rotation gratiP (3) and instability of the rigid-body motion

by formulating equation (1) as a geodesic equation.

2. Riemannian geometry onSO(3)

Before introducing the Riemannian geometry on the group manifold, let us summarize the
Lie—Poisson formulation of equation (1). We denote Bye R® the material points of
the rigid body with the coordinate&P;, P,, P3) relative to the frame fixed to the body
(body systein Corresponding spatial points relative to the coordinate system fixed in the
space ¢patial systeinare denoted by = (p1, p2, p3) € R3. Both systems are assumed
to have a common fixed origin. By the definition of the rigid body, there exists an orbit
M@)(t € RY) on SO(3) such thatp = M () P. It is known in the classical analysis that
the motion of the angular velocity vector is time-periodic in the body system, while the
body’s motion is quasiperiodic relative to the fixed space [2, 4]. By defining the angular
velocity © € R? and the angular momentuiil € R3 relative to the body system, it can
be shown in the representation &% that 2 is an element of the Lie algebra(3) of
SO (3), while IT belongs to its dual spac&(3)* [2]. The duality betweerf2 andII is
confirmed by one-to-one linear correspondehke- I(2) wherel := diag(/3, I, I3) is the
inertia tensor [2, 5]. Following the standard method, if we take the Hamiltonian given by
HI) = 3{I1-17'aD} = % le L2 € C™®(s0(3)"), it is readily verified that the
governing equation foIl is given as the Hamilton’s equatioa%lF = {F, H} where{x, %}
is the Lie—Poisson brackd®].

Because the above Hamiltonian is quadratic, following the theorem by Arnold [3], an
inner product at the identity elemeate SO(3) is naturally introduced agf2, '), =
Zf:l 1;2;2; where 2, 0 € s0(3). Consequently, a Riemannian metric on the whole
SO (3) manifold is induced by the left extension of this inner product. We apply the
formula in the Riemannian geometry{®xY, Z) = {([X,Y], Z) — ([X, Z],Y)) —
{[Y, Z], X)}, to the present system, whel, Y and Z are left invariant vector fields
on SO(3) and k, %] denotes the Lie bracket [6]. Identifying the Lie algebta3) with the
set of left invariant vector field&; (SO (3)), the covariant derivative at is derived from
the above formula as

(Ve = 5{[m, € = 1711(m) x € +1(€) x W)} )

where I, €] = n x € for n, £ € s0(3). Then the Euler's equation (1) is readily obtained
as a geodesic equation. To show this, let us denotg,gy : R' — SO (3) the geodesic
curve which starts frong € SO(3) in the direction ofu € 7,50 (3), namely satisfying
vu(0) = g andy, (0) := %y(O) = u. Because of the left invariance, the geodesic equation
Vi Yu =0 ath := y,(t) € SO(3) is equivalent to the following equation at[10]:

. d d _
TiLis{Vy,ult) = 5 @+ (Vo). = £ Q+1 Hax1(Q)} =0 ®3)

whereQ := T, L,-1y, € so(3). Itis confirmed that equation (3) is identical to equation (1).
Thus, one can investigate the instability of the rigid-body motion by the theory of
Riemannian geometry.
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Before the instability analysis, we briefly describe tracobi field and theconjugate
points that are significant concepts concerning the geodesic variation. The Jacobi field (or
the variational field)V () along the geodesig, (¢) is defined byV (r) = 0;a(t, §)|5-0,
where«(t, §) is a variation ofy, with a variational parameter € R? such thaix(z, 0) =
vu(t) and V,9,a(t,5) = 0 for anys. This V(¢) is governed by the Jacobi equation,
Vo) Vs ty VIO +R(V (1), yu (1) Y () = 0, WhereR (u, v)w := {Vy,Vy— Vy Vi, — Vi o) Jw
is the curvature tensor. Then, it is readily derived that

2

d
@((V(t), V) =2{(Vy, V(©), Vy, V) — KV (1), yu())}

whereK (u, v) ;= {(R(u, v)v, u)is thesectional curvatureof the two-dimensional section
spanned by the vectorg,v € T,SO(3). The norm{V, V) gives a measure for the
instability of the geodesic. For instance,Af(V (¢), y,(¢)) is negative definite along,,

the geodesic is said to hestablebecause one of the two independent solutions is growing
with respect to the time. If there exisi&(¢) such thatV (0) = V (zp) = O for 7o > 0, the
point y, (fo) is said to beconjugateto the pointy, (0) with the conjugate time,. Both

for the geodesic and its variation, the same elemetix{3) acts on the rigid body at the
conjugate time.

3. Instability analysis by the Jacobi equation

It can be easily shown that the Euler equation (1) ferhas three steady solutions,
S1 = (w,0,007, S, = (0,w,07 and Sz = (0,0, £)T wherew, w and& are constants.
Concerning these steady solutions, the following theorem is well known in the mechanics
[2, 4].

If 1 < I, < I3, S; and S3 are stable whileS; is unstable in the sense bfapunov

In the following, we investigate the instability of these solutions by the Riemannian
geometry introduced above.

First, let us study the development of the Jacobi field. Applying the covariant derivative
(2) and equation (3), the general form of the Jacobi equation foiSthée3) manifold is
obtained to be

2
%YjLXx%Y—F(X,%Y)JF%F(X,X)xY—F(X,XxY):O 4)
where F(X,Y) = I"{I(X) x Y + I(Y) x X}, and the two vectorX = X (¢) € so(3)
andY = Y (¢) € so(3) correspond to the velocity vector and the Jacobi field along the
geodesic, respectively. We impose the orthogonal conditidh Y)), = O because the
component ofY” parallel toX is only related to the reparametrization of the timerhen,

for a steady stat&X = S» = (0, w, 0)" and general ordering of the magnitudgs I, and

I, the Jacobi field has the form a&f (r) = (y1(¢), 0, y3(¢))T and equation (4) is explicitly
described as

d? L—1I3 L — I3 d
SVt @®y1 + (1— )w—y3= 0

dr I I dr (5)
dt2y3 Is Y3 Is dar y1 =0

By eliminating y3 from (5), we obtain the following differential equation foy:

d_4 +(1 (I — L)1 — 1) wzd_z (I, — )1 — 11)0)4
dl4yl VEVE) dlzyl VEVE

y1=O.
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Assumingy; = A exp(At) whereA and are constants, it is readily found thet has two
roots,

L —1I3)(,—1
)\|2=—a)2 and )»ﬁ :_( 2 3)( 2 1)0)2
1113
from which the above stability theorem is recovered. In fact/,ifis the minimum or
maximum of the setl,, I», I3}, only periodic solutions can exist because Ucfﬂs G=11

are negative. However, in contrast,fif < I, < Iz or I; > I, > I3, there existsy; which
grows exponentially with respect to the time becau$éecomes positive.

It is remarkable that? corresponds to the frequencies of the steady-state rotation
observed in thespatial frame. This is the unique point of this analysis which treats the
group manifold. Although the geodesic equation is identical to the governing equation for
the body angular velocity, the manifold itself is thgroup SO (3) which acts on the rigid
body Therefore, both the frequencies that correspond tadtetional action determined
by S, and theperturbative actionwhich moves the rotation axis are obtained. In contrast
to this, only the latter appears in the conventional stability analysis that simply linearizes
equation (3).

4. Conjugate points

It is also worth mentioning that regardless of the shape of the rigid body, a conjugate point
exists for the geodesic which corresponds to the linearly stable steady rotation. The general
solution of the Jacobi equation (5) is

y1 = Asin(wt) + B coswr) + (1 — a)b{C sin(vabor) + D cos(vabwt)}
y3 = B sin(wt) — A coSwt) — (1 — b)vab{D sin(\/ﬁa)t) -C COS(\/Ewt)}

where A, B, C and D are arbitrary constants; = (I — I3)/I1, andb = (I, — 1)/ Is.
In order to show the existence of a conjugate point, we require b)v/abC = A and
(1 —a)bD = —B so thaty;(0) = y3(0) = 0. Then, equation (6) is described as

yi@®)\ _ ( sin(wt) +msin(vabowt) cogwt) — cos(+v/abot) A ;
(ys(t)> N (—( cogwt) — cos(vabot))  sin(wt) +m~1sin (th)) (B) (7)

wherem = g% If the determinant of the Z 2 matrix in equation (7) vanishes at
t =t > 0, a conjugate point can exist becausé&y) = y3(7p) = 0 for a certain ratiod/B.

This zero-determinant condition is equivalent to
1+ M 1-M
i cos((vab + 1)wr) +

whereM = %(m + %). Therefore, ifl; is the largest or smallest df's (i = 1, 2, 3), which
is equivalent toM > 1, a conjugate point exists because a solutient,(> 0) of equation
(8) exists.

Furthermore, it is interesting thany Jacobi field (7) has a conjugate time, for the rigid
bodies of appropriate shapes. In fact, the right-hand side of equation (7) vanishes for any
A and B, if and only if

cogwt) — cos(vabwt) = sin(wt) + m sin(vabwt) = sin(wr) + m ™ sin(Vabor) = 0.
9)
Therefore, a conjugate tinre= 7y > 0 which satisfies equation (9) exists, if and only if
I; = Iz(which impliesm = 1) or Vab € Q. (10)

(6)

cos((vab — L)wr) —1=0 (8)
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One can easily confirm that there exist many trids I», I3)'s which satisfy the second
condition in equation (10) together withpriori constraints for the general rigid bodies,

[;200=123) and Ii+1; > I (G, ). kefl, 2,3}, i#j#k#iD).
(11)

(For exampley/ab = 1/8 for (I1, I», Is) = (16, 15, 20).) If condition (10) is satisfied, both

the steadily rotating rigid body (corresponding to the geodesic) and the slightly perturbed
one (corresponding to the variation) simultaneously return to their initial configurations,
namely are acted by € SO(3) at the same time. This statement is consistent with the
conventional linear analysis made in thatial coordinate system [4].

5. Sectional curvatures

Secondly, let us study the sectional curvature of $@(3) manifold. For infinite-
dimensional Lie—Poisson systems, the sectional curvatures are mainly investigated because
of the difficulty of the Jacobi equation [3, 8, 9, 11]. In contrast, for the finite dimension,
the Jacobi equation can be given an explicit solution. In the following, we calculate the
sectional curvature directly to investigate the relationship between the Riemannian structure
and the stability property. In the present formulation, the sectional curvature at the identity
elemente € SO(3) is generally described as

1/ (I, — I3)?
K(X,Y)=§<(22113)

where X, Y € s0(3). Then, for the steady stats,

o? [ ((I2— I3)? 3 (I — Ip)? 3
K(S5,Y)=— — 41 Is— =1 2 — 41 I, — =1I 2
(52,Y) 2{( o0 + L+ 13 21>Y3+< o0 +L+1D 23)Y1}
(12)

whereY = (y1, y», y3)T corresponds to the Jacobi field. The sign of equation (12) is
determined by the coefficients € and y2. If both of them are definitely positivek is
positive forany Jacobi field. In contrast, if one of them is negative, the positiviti a§ lost.
To illustrate the sign oK clearly, let us regard the séky, I», I3) as coordinates dk®, and
denote the surfaceg,— I3)%2+ 211 1,4 21311 —31% = 0 and(l1 — )2+ 21311+ 2113312 = 0
by sf3 andsf1, respectively. These two surfaces together with the boundaries determined
by equation (11) are illustrated in figure 1. The classical stability theorem state§that
is stable if thepoint | = (I3, I, I3) is in the regionsS,i's (¢« = p,*;i = 0, 1, 2), while
unstable inU,i's (¢ = p, *;i = 1,2). On the other hand, the sign &f is positive for any
Y in the regions with the subscript, while the positivity ofK is not assured in those with
the subscript<. We are interested in the regiofisi’s (i = 1, 2) because the positivity of
K is not assured while the geodesicstable by the theorem.

To investigate this situation, let us consider planar rigid bodiess.ip such that
I+ Is = I1(0 < I, < I3) and the Jacobi fiel@ with the conditionY |;—o = 0. Then, the
sectional curvature is explicitly written as

3 . .
+ I+ I3 — 511> (x2y3 — x3y2)2 + (cyclic permutations

LIy, 2)
+1 13
12+13y3 2Y1 (13)

where y; = 2/—aC sin(wt) + (1 — a){D coSwt) — C sin(/—awt) — D coS/—awt)},
v3 = (1 — a)Dsin(wt) + 2/—a{—C cojwt) — D sin(y/—awt) + C cog/—awt)} and
a = (I,—1I3)/(I>+13). Varying the values of the parametdps I3, C and D, we investigated

K(S,,Y) = o <—
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Figure 1. Intersections of the unit sphere R® with surfaces concerning the instability 65.
The sectional curvatur& is positive definitein the regions with the subscript, while the
positivity of K is lost in those with the subscript

the temporal behaviour of equation (13). Then, it is confirmed that the sectional curvature
K has positive maxima during its time development. For examplé; E I3 (the rigid
body takes the form of a nearly circular plate§,(S,, Y) takes positive maxima with
larger amplitude and negative minima with smaller amplitude (figure 2). In contrast, if
I, <« I3 (the rigid body being like a stick)K (S,, Y) takes negative and positive values
quasiperiodically. We further confirmed that the maximakafS,, Y) are positive at any
point in S,i's (i = 1, 2).

It is interesting to find that not only the maxima but also the time averkgef
K(S,,Y) is positive inS,i's (@« = p,*;i = 0,1,2). This statement is trivial ir§,i’s
(i = 0,1,2). As for the regionsS,i's (i = 1,2), a straightforward calculation shows
that K(S,,Y) = K.+ F(t) where F(t) is a function oft with Fourier frequencies
2w, (1+ vab)w and 2/abw, while K. is a constant given by

K. = o*M{F.C? + F,D?
whereC and D are the constants which appeared in equation (6),

(I — I3)? 3 14h (I — Ip)? 3
Fr={——= 417 Iz — =11y —(I, — I —— 4+ I I — =1
1 { o0 + DL+ 13 5l 13(2 3) + T +hL+1 513
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sectional curvature
sectional curvature

0 50 100 tlme 150 200 250 ° 20 40 0 tlme 80 100 120
Figure 2. The time evolution of the sectional curvature of an almost circular plalew (= 1,

Ib=113=1001,C=1andD =0;b) w =1, =1,13=1001,C =0andD = 1.

LIz — 211 + I I,
X

213
(I — Io)? 3 (I — I3)? 3
Fr={— 41 I, — =TI I, —1 — 41 I3 — =1
2 { T + 11+ 1 23(2 1)+ o0 + L+ 13 5h
LIz — 2131 + 1115
X
2L

and M = (I — I)(Is+ I, — I;)?I;°I;%. To show the positiveness o, first, let us
consider such a rigid body that satisfies the conditiémb = m/n (m,n € N). Then,
taking the time average for the periods20~1, the mean curvatur& is obtained to be
K=K + 5~ 02"”/“’ F(t)dt = K.. The sign ofK, is positive. In fact, if we denote the
regionUiZL2 S.i by B, bothM F; andM F, attain their maxima and minima at the boundary
0B becauseV,(M F;) and V(M F,) do not vanish inB — dB. After straightforward
calculations, one can confirm thaf F;’s (i = 1, 2) are non-negative & B, especially
positive definite atf;’s (i = 3, 1). Therefore K (= K¢) is positive in this case. Next, let
us examine the rigid body which violates the conditignb = m /n (m, n € N); in this case,
Vab becomes an irrational number. In order to calculitelet us adopt an approximation
such thatv'ab ~ m/n (m,n € N). (It is known that for any given accuracy, an irrational
number can be approximated by a rational number.) For sufficiently largénich means
high enough precisiork becomes positive because the integfal foz””/’” F(t) dt becomes
small enough.

In the linearly unstable regiong,i's (¢« = p, x;i = 1, 2), the above statement about
the positiveness ok is not valid becaus& can diverge to negative infinity for sudi(r)
that grows exponentially with respect to the time, according to equation (13).

6. Conclusion

Geometrical aspects of the free rotation of a rigid body are studied in view of the integrable
property known in the classical mechanics. According to the geodesic formulation of the
Euler equation, the covariant derivative and the sectional curv&uaee given explicitly.

By deriving the solution of the Jacobi fiell, the stability theorem is recovered and the
existence of the conjugate points is confirmed. Furthermore, it is found that the sectional
curvaturek is dominated byositivevalues in the case of linear stability, though there exist
Y'’s which makekK negative in the parts of linearly stable regidhs's (i = 1, 2). However,
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the time-averaged curvatuféis surely positive inS,i’s (@ = p, ;i = 0, 1, 2). In contrast,

in the linearly unstable region8,i’s (¢ = p, *;i = 1, 2), there exist alway¥’s which
make K grow indefinitely with negative sign. Thus, it is shown that the positivitykof

for any Y corresponds to the linear stability of the free-rigid-body motion. The dynamical
property (stability) is directly explained by Riemannian geometrical quantitiesuid K)

in this work.

Since the conjugate points have a close relation to the global nature of the manifold,
they will also give clues to investigate the long-time behaviour or the large variations of
the geodesics. Further analysis concerning the nonlinear stability should be developed in
the near future.
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